
174 TUGboat, Volume 42 (2021), No. 2

TEI-XML to LATEX workflow: Issues and
lessons

Nicolás Vaughan

Abstract

In this paper I discuss some of the issues surrounding
the workflow used in the production of the annotated
Spanish translation of the medieval work, Salomon
et Marcolfus. I explain the decisions taken regarding
the XSLT transformation of the TEI-XML document,
in order to produce a final print-ready PDF from the
LuaLATEX text.

1 Introduction

Several methods are available for converting XML

documents into PDF format. Perhaps the most well-
known is that of XSL Formatting Objects (XSL-FO)
[2]. However, given that XSL-FO was originally de-
signed to produce technical documents, it is quite
difficult— if not impossible— to produce other kinds
of more sophisticated publications with it. For ex-
ample, while technically possible, it is impractical to
create critical editions using XSL-FO. Moreover, the
only available open source application for generating
PDFs from XSL-FO sources— the Apache Formatting
Objects Processor (FOP)—offers limited compliance
with the W3C XSL-FO 1.1 Standard. For example, it
does not support interesting features such as indexes
and table properties [1], which are now covered by
the standard.

Another, more recent, method of producing PDF

from XML involves the use of a technology called
CSS Paged Media, originally conceived by researchers
at Mozilla [3]. Since XML cannot make direct use
of CSS, this method requires that the XML sources
be transformed—e.g., via XSLT—into HTML files,
which, together with the appropriate CSS, can later
be converted into PDF. An application is ultimately
responsible for carrying out that conversion. Several
free and/or open source (FOSS) applications such as
wkhtmltopdf [20] and WeasyPrint [16] are available.
As in the case of XSL-FO, however, the problem with
such FOSS applications is that they provide subpar
performance when compared with commercial ones.
On the other hand, commercial applications such
as PDFreactor [5] and PrinceXML [6] are expensive,
often costing thousands of dollars.

Bearing this in mind, the approach we took for
the present project was to use XSLT transformations
to convert the original XML (more exactly, TEI-XML)
into a LuaLATEX document, which in turn would be
used to generate a PDF file. This should allow for
the highest possible quality in a print-ready PDF file,

while at the same time affording the availability of
useful LATEX packages for generating bibliographies,
indexes, nomenclatures, and the like.

Nonetheless, this workflow proved to be not as
straightforward as originally thought. Leaving aside
the problem of dealing with undesired whitespace
(see §4), the greatest complication concerned the
decision of where to carry out most of the granular
processing (e.g., how to transform an XML <cit>

element into a full-fledged LATEX citation)— in the
XSLT code or in the LuaLATEX code. Ideally one
wishes for such processing to occur mostly in one or
the other of the stages, as this simplifies the code
and facilitates debugging. In actuality, however, this
was not possible. The idiosyncrasies of each language
made it necessary that some parts of the processing
be preformed in the first stage, while others in the
second one.

2 Background

The project alluded to above is an original anno-
tated translation into Spanish of the Late-Medieval,
anonymous work, Salomon et Marcolfus, written in
Medieval Latin. The objective was to produce a TEI

edition of the Latin text (based upon the 1912 criti-
cal edition), with an accompanying, digitally-born
Spanish translation, also in TEI. An accompanying
Middle-English translation, as well as an original
critical edition created from the collation of a score
of surviving incunabula, are also planned.

All TEI texts were transformed using XSLT into
XHTML documents destined for a web version, on
the one hand; and into LuaLATEX documents, which
were thereafter compiled into print-ready PDF files
destined for digital consumption or for print, on the
other hand. The LuaLATEX version contains indexes
of mentioned names and of cited works, manuscripts,
and incunabula, as well as a bibliography. It is still a
work in progress, and this is the reason why it is not
fully available to the public. When ready, it will be
made available under the CC BY-NC-SA 4.0 license.

3 Workflow

We first designed a series of XSLT templates [15]
corresponding to each TEI-XML element in the source
documents.1 In what follows we will not describe all
transformations (the reader can skim the code), but

1 The precise specification of the TEI documents was in-
spired by the guidelines described by the Scholastic Commen-
taries and Texts Archive (SCTA) for diplomatic transcriptions
[18, 19]. Since the present document was an annotated trans-
lation of a Medieval Latin text, several modifications had to
be made. Accordingly, we created ODD [13] and RELAX NG

[14] schemas to validate the TEI code.

doi.org/10.47397/tb/42-2/tb131vaughan-tei

Nicolás Vaughan

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.47397/tb/42-2/tb131vaughan-tei

TUGboat, Volume 42 (2021), No. 2 175

will refer only to some of the more interesting and
challenging.

The templates were used to transform the TEI

source documents into LuaLATEX documents. It is
worth mentioning that the decision to use LuaLATEX
rather than PDFLATEX responded to the need to
render Ancient Greek and Hebrew scripts, something
not easily possible in the latter. Finally, we used the
Java edition of Saxon-HE v.10 [7] to process the XSLT

transformations to render LuaLATEX code, which was
thereafter compiled into PDF files.

The main template contains the core of the Lua-
LATEX document:

1<xsl:template match="/">

2 \def\SMVersion{<xsl:value-of

3 select="$combinedversionnumber"/>}

4 \input{smpreamble.tex}

5 \begin{document}

6 \input{frontmatter.tex}

7 \mainmatter

8 \pagestyle{smtrad}

9 \chapterstyle{smtrad}

10 <xsl:apply-templates select="//body"/>

11 \input{backmatter.tex}

12 \end{document}

13</xsl:template>

Listing 1: Main XSLT template

To keep it simple, we load the preamble and all
macros as external documents: smmacros.tex, which
in turn is included in smpreamble.tex. The whole
document is built using the memoir class [17], with
a few additional packages. One such is the enotez

package [4], needed to customize the endnotes.
The TEI document contains several levels of log-

ical division, determined by nested <div> elements:

1<body>

2 <div> <!--part 1-->

3 <div> <!--chapter 1-->

4 <p>...</p> <!--paragraph 1-->

5 ...

6 </div>

7 ...

8 </div>

9 ...

10</body>

Listing 2: Logical divisions in a TEI document

In XML the fact that one <div> element is the child of
another <div> element is sufficient to establish their
logical relationship. In LATEX, by contrast, logical
divisions are determined by the different partitioning
commands: \part, \chapter, \section, and so on.

Nevertheless, to facilitate the transformation,
we decided to make use of the TEI attribute @ana

in the <div> elements. Accordingly, a <div> with
@ana="level1" is transformed into a LATEX \part;
one with @ana="level2", into a LATEX \chapter;
and one with no @ana into a \section. Hence, we
created the following XSLT template to transform
parts and chapters accordingly:

<xsl:template match="div[child::head]"> 1

<xsl:text>

</xsl:text> 2

<xsl:choose> 3

<xsl:when test="head[@ana='level1']"> 4

<xsl:text>\part</xsl:text> 5

</xsl:when> 6

<xsl:when test="head[@ana='level2']"> 7

<xsl:text>\chapter</xsl:text> 8

</xsl:when> 9

<xsl:otherwise> 10

<xsl:text>\section</xsl:text> 11

</xsl:otherwise> 12

</xsl:choose> 13

<xsl:text>{</xsl:text> 14

<xsl:copy-of select="head"/> 15

<xsl:text>}</xsl:text> 16

<xsl:if test="@xml:id"> 17

<xsl:text>\label{</xsl:text> 18

<xsl:value-of select="@xml:id"/> 19

<xsl:text>}</xsl:text> 20

</xsl:if> 21

<xsl:text>

</xsl:text> 22

<xsl:apply-templates/> 23

</xsl:template> 24

Listing 3: <div> sectioning template

Line 15 copies the content of the <head> element
which is a child of the <div>, and uses it as a title
for the division. In addition, lines 2 and 22 introduce
two line feed characters (Unicode U+0010) in the
resulting LATEX document. This is required both for
readability and to create a LATEX line break. In other
templates (e.g., that in Listing 4 below) we simply
left a blank line, mainly for readability of the XSLT

code.
Paragraph elements (<p> in our TEI document)

are transformed into LATEX paragraphs seamlessly,
always taking care to leave a line break before and
after them. Some paragraphs, however, are treated
differently. For some parts of the text in the ap-
pendixes it was necessary to create pseudo-headers
which were horizontally centred. These were encoded
using the TEI attributes @ana="h1" and @ana="h2"

for a <p> element. In addition, some non-indented

TEI-XML to LATEX workflow: Issues and lessons

176 TUGboat, Volume 42 (2021), No. 2

paragraphs were also needed, which were encoded us-
ing the attribute @rend="indented".2 The complete
template for <p> elements is the following:

1<xsl:template match="p">

2 <xsl:if test="@xml:id">

3 <xsl:text>\label{</xsl:text>

4 <xsl:value-of select="@xml:id"/>

5 <xsl:text>}</xsl:text>

6 </xsl:if>

7 <xsl:choose>

8 <xsl:when test="@ana='h1' or @ana='h2'">

9 <xsl:text>

10 \begin{adjustwidth}{.2\textwidth}%

11 {.2\textwidth}

12 \begin{center}</xsl:text>

13 <xsl:if test="@ana='h1'">

14 <xsl:text>\large{}</xsl:text>

15 </xsl:if>

16 <xsl:apply-templates/>

17 <xsl:text>\end{center}

18 \end{adjustwidth}

19

20 \bigskip

21 </xsl:text>

22 </xsl:when>

23 <!--indented paragraph-->

24 <xsl:when test="@rend='indented'">

25 <xsl:text>\begin{indentedpar}</xsl:text>

26 <xsl:apply-templates/>

27 <xsl:text>\end{indentedpar}</xsl:text>

28 </xsl:when>

29 <!-- -->

30 <xsl:otherwise>

31 <xsl:apply-templates/>

32 </xsl:otherwise>

33 </xsl:choose>

34</xsl:template>

Listing 4: <p> template

As can be seen in lines 24–28, a TEI indented para-
graph is transformed into a LATEX indentedpar en-
vironment, defined like this in the smmacros.tex

file:

1\NewDocumentEnvironment{indentedpar}{}

2{\begin{list}{}%

3 {\setlength\rightmargin{28pt}%

4 \setlength\leftmargin{28pt}}%

5 \item[]\small\ignorespaces}

6 {\end{list}}

Listing 5: indentedpar environment

2 According to the TEI P5 Guidelines [11], @ana is used
to provide an analysis of the element containing it, whereas
@rend describes the way it is actually rendered.

This illustrates the issue mentioned earlier—where
should the piecemeal processing occur. In this case,
both the XSLT and the LATEX code perform part
of the processing necessary for producing and type-
setting indented paragraphs. Such an ugly “lan-
guage promiscuity”—so to speak— is exacerbated
in the case of citations, quotes, and references. This
is mainly because we found it necessary, in the
TEI document, to distinguish quotes in several lan-
guages: Latin, Spanish, English, Middle English,
Anglo Saxon, French, Middle French, Old French,
German, Classical Greek, Welsh, Italian, and He-
brew. The XML attribute @xml:lang, common to
all elements, makes this seemingly easy, for instance:

<q xml:lang="fra"> 1

Ceci n'est pas une pipe. 2

</q> 3

We follow the ISO 639-3 [8] standard to encode
language names: fra for current French, fro for
Old French, enm for Middle English, and so on.
The problem is that LATEX’s babel package uses
other language names.3 So the transformation could
not proceed as easily as merely taking the value of
@xml:lang and using it as an argument to babel’s
otherlanguage* environment or commands to that
effect. First we had to translate the ISO codes into
babel codes using a special function in XSLT:

<xsl:template name="my:lang"> 1

<xsl:param name="lname"/> 2

<xsl:choose> 3

<xsl:when test="$lname='ang'">english</xsl:when> 4

<xsl:when test="$lname='enm'">english</xsl:when> 5

<xsl:when test="$lname='eng'">english</xsl:when> 6

<xsl:when test="$lname='lat'">latin</xsl:when> 7

<xsl:when test="$lname='es'">spanish</xsl:when> 8

<xsl:when test="$lname='fro'">french</xsl:when> 9

<xsl:when test="$lname='frm'">french</xsl:when> 10

<xsl:when test="$lname='fra'">french</xsl:when> 11

<xsl:when test="$lname='grc'">greek</xsl:when> 12

<xsl:when test="$lname='cym'">welsh</xsl:when> 13

<xsl:when test="$lname='deu'">german</xsl:when> 14

<xsl:otherwise>english</xsl:otherwise> 15

</xsl:choose> 16

</xsl:template> 17

<xsl:function name="my:lang" as="xs:string"> 18

<xsl:param name="lname"/> 19

<xsl:call-template name="my:lang"> 20

<xsl:with-param name="lname" select="$lname"/> 21

</xsl:call-template> 22

</xsl:function> 23

Listing 6: Language code names conversion

3 After my TUG 2021 presentation, I have been advised—
by Frank Mittelbach and others, to all of whom I am grateful—
that Babel now supports ISO language codes. This should
simplify the XSLT processing here described.

Nicolás Vaughan

TUGboat, Volume 42 (2021), No. 2 177

Our original plan was to code this algorithm (and
perhaps others) using either pure (LA)TEX commands
or Lua functions within a LuaLATEX document. How-
ever, this proved to be more difficult than expected,4

and thus we defaulted to performing the processing
both in XSLT and in LATEX.

We next created the XSLT template to transform
<foreign>, <mentioned>, and <gloss> elements, as
well as standalone <q> elements:

1<xsl:template match="foreign | mentioned | gloss

2 | q[not(parent::cit)]">

3 <xsl:text>\MyQ</xsl:text>

4 <!--insert lang-->

5 <xsl:text>{</xsl:text>

6 <xsl:choose>

7 <xsl:when test="@xml:lang

8 or name(.)='foreign'">

9 <xsl:sequence

10 select="my:lang(@xml:lang)"/>

11 </xsl:when>

12 <xsl:otherwise>

13 <xsl:text>spanish</xsl:text>

14 </xsl:otherwise>

15 </xsl:choose>

16 <xsl:text>}</xsl:text>

17 <!--insert label-->

18 <xsl:text>{</xsl:text>

19 <xsl:if test="@xml:id">

20 <xsl:value-of select="@xml:id"/>

21 </xsl:if>

22 <xsl:text>}</xsl:text>

23 <!--insert text-->

24 <xsl:text>{</xsl:text>

25 <xsl:if test="@ana='lexeme'">

26 <xsl:text>\lexquote{</xsl:text>

27 </xsl:if>

28 <xsl:apply-templates/>

29 <xsl:if test="@ana='lexeme'">

30 <xsl:text>}</xsl:text>

31 </xsl:if>

32 <xsl:text>}</xsl:text>

33</xsl:template>

Listing 7: Language code names conversion

Lines 7–12 call the previous function (Listing 6) and
introduce the babel-compliant language code. If no
language code is specified, the template defaults to
Spanish. Line 3 produces a LATEX command, \MyQ,
which sorts out the language of the quote, defined
as follows:

4 See the tex.stackexchange.org discussions [9, 10].

1\NewDocumentCommand{\MyQ}{m m +m}

2{%

3 % check for label

4 \ifstrempty{#2}{\relax}{\label{#2}}%

5 % check for language

6 {%

7 \ifstrempty{#1}%

8 {\begin{otherlanguage*}{spanish}}%

9 % else

10 {\begin{otherlanguage*}{#1}}%

11 % if spanish

12 \ifstrequal{#1}{spanish}%

13 % then

14 {\enquote{#3}}%

15 % else

16 {%

17 \ifstrequal{#1}{greek}%

18 {#3}%

19 {\textit{#3}}%

20 }%

21 \end{otherlanguage*}%

22 }%

23 }

Listing 8: LATEX code for handling quotations

Handling of citations (which comprise a quote in the
original language, an optional quote of the Spanish
translation, and a bibliographic reference) is per-
formed in a similar fashion by three different XSLT

templates and a series of LATEX commands.
More interesting, however, is the code used to

handle cross-references, both internal and external.
We decided to take advantage of the @type attribute
of TEI’s <ref> element, which allows for twelve kinds
of references, to wit:

Value Meaning

a \citeauthor

p \parencite

t \citetitle

y \citeyear

py \citeyear in parenthesis
abbr \citeabbr

pabbr \citeabbr in parenthesis
abbrpc \citeabbr (content)
fulltext use text/rend without calling \cite

nc \nocite

pnc \nocite in parenthesis
url \href

Table 1: Values for //ref/@type

For instance, to cite a work from the bibliography
using a predefined abbreviation and putting the “con-
tent” of the citation inside parentheses (in the @rend
attribute), the TEI code will be the following:

TEI-XML to LATEX workflow: Issues and lessons

tex.stackexchange.org

178 TUGboat, Volume 42 (2021), No. 2

<cit> 1

<ref target="#DMLBS" type="abbrpc" 2

rend="s.v. 2"/> 3

</cit>, 4

Listing 9: Example of citation with reference

Some of the twelve possible references are handled
by different XSLT templates. For the case chosen
above (@type="abbrpc"), the code is as follows:

1<xsl:template match="ref[@type='abbrpc']"

2 priority="2">

3 <xsl:text>\citeabbr{</xsl:text>

4 <xsl:value-of select="my:cleanref(@target)"/>

5 <xsl:text>}</xsl:text>

6 <!--insert rend/text-->

7 <xsl:text>\space(</xsl:text>

8 <xsl:choose>

9 <!--select @rend if present-->

10 <xsl:when test="@rend">

11 <xsl:value-of select="@rend"/>

12 </xsl:when>

13 <xsl:otherwise>

14 <xsl:apply-templates/>

15 </xsl:otherwise>

16 </xsl:choose>

17 <xsl:text>)</xsl:text>

18</xsl:template>

Listing 10: Template for //ref[@type="abbrpc"]

As can be seen, we have taken full advantage of
biblatex’s citation commands, so all processing is
performed by LATEX behind the scenes. This feature,
as well as automatic indexes and nomenclatures, jus-
tifies our choice of (Lua)LATEX within the TEI →
PDF workflow.

4 Whitespace

One of the tougher problems when dealing with XML

and related languages concerns whitespace characters.
XML always combines multiple whitespace characters,
collapsing them into a single space character. This is
sometimes useful, but can create undesirable results
when processing TEI documents. Take, for instance,
this sample TEI code:

1<p>

2 Some text here that will occupy a couple of

3 lines in the main body of the final document.

4</p>

5<note>

6 A textual note for the previous paragraph.

7</note>

Listing 11: Example of TEI whitespace

Here, indentation and line breaks are needed only for
human readability, not for TEI-XML validity. How-
ever, since our TEI document was digitally born—
i.e., not converted from other sources—and all edito-
rial work is done directly with it, it is imperative that
the authors, editors, copy-editors, and other people
working with the text can work with it with ease. In
short, we did not want to sacrifice code legibility.

The consequent problem is that without further
processing and cleaning, the former code will be
rendered with an additional space (marked here as a
visible space) between the paragraph and the endnote
anchor:

. . . in the main body text of the finished doc-
ument. 1

Figure 1: Example of rendered text

For typographical reasons, such insertion of white-
space characters is highly undesirable. XSLT can
deal with some of these issues, but only with limited
success. We used the following code:

<xsl:template match="text()"> 1

<xsl:value-of 2

select="replace(., '\s+', ' ')"/> 3

</xsl:template> 4

<xsl:function name="my:cleantext"> 5

<xsl:param name="input"/> 6

<xsl:variable name="step1" 7

select="replace($input, '\n+', ' ')"/> 8

<xsl:variable name="step2" 9

select="normalize-space($step1)"/> 10

<xsl:sequence select="$step2"/> 11

</xsl:function> 12

Listing 12: XSLT code for dealing with whitespace

Nonetheless, many spaces still remained in the trans-
formation. Thus, an additional processing step had
to be introduced in our workflow, this time in Python
[12]. The script we devised is a collection of regex
search-and-replace commands such as the following:5

Remove trailing whitespace at closing paren 1

(r" +\)", r")"), 2

Remove redundant space before \endnote. 3

(r"\s*(\\endnote)", r"%\n\n\1"), 4

Break line after colon (but skip citations) 5

(r": +(?!\d)", r":\n"), 6

Listing 13: Python code for dealing with whitespace

5 More exactly, these are tuples in a list which is then
processed with a re.sub(cpattern, replacement, buffer)

function.

Nicolás Vaughan

TUGboat, Volume 42 (2021), No. 2 179

After running the script, unnecessary whitespace is
successfully pruned from the output LATEX document.

5 Conclusions

In the end, the workflow consists of the following
steps:

TEI-XML → XSLT → Python → LuaLATEX → PDF.

To be sure, some of the additional processing—con-
cerned mainly with the transformation of TEI ele-
ments into LATEX commands—might be realised in
Lua (within LuaLATEX). However, it is unlikely that
the whitespace problems can be solved without the
help of a regex solution (in Python, sed, etc.), as it
concerns the passage from one stage to another in
the workflow.

References

[1] Apache FOP Compliance Page.
https://xmlgraphics.apache.org/fop/

compliance.html

[2] A. Berglund, ed. Extensible Stylesheet
Language (XSL) Version 1.1. W3C
Recommendation 05 December 2006.
https://www.w3.org/TR/xsl11/

[3] E.J. Etemad, S. Sapin, eds. CSS Paged Media
Module Level 3. W3C Working Draft, 18
October 2018.
https://www.w3.org/TR/css-page-3/

[4] C. Niederberger. Enotez—Support for
end-notes. https://ctan.org/pkg/enotez

[5] PDFreactor. https://www.pdfreactor.com/

[6] PrinceXML. https://www.princexml.com/

[7] Saxon XSLT and XQuery Processor. https:
//sourceforge.net/projects/saxon/files/

[8] SIL. ISO 639-3. https://iso639-3.sil.org/

[9] StackExchange - Problem using macros in
directua. https://tex.stackexchange.com/
questions/556911/

[10] StackExchange - problem with command
expansion. https://tex.stackexchange.

com/questions/557079/

[11] TEI Consortium. TEI P5: Guidelines for
Electronic Text Encoding and Interchange.
https://tei-c.org/release/doc/

tei-p5-doc/en/html

[12] N. Vaughan. Cleantex - Python script
to remove unwanted whitespace from
LaTeX files produced from TEI. https:

//github.com/nivaca/cleantex

[13] N. Vaughan. SM-ODD. ODD schema
for the Salomon & Marcolfus project.
https://github.com/nivaca/sm-odd

[14] N. Vaughan. SM-RELAXNG schema
for the Salomon & Marcolfus project.
https://github.com/nivaca/sm-relaxng

[15] N. Vaughan. XSLT-LaTeX - templates to
transform TEI-XML documents into LATEX.
https://github.com/nivaca/xslt-latex

[16] WeasyPrint. https://weasyprint.org/

[17] P.R. Wilson, L. Madsen. Memoir – Typeset
fiction, non-fiction and mathematical books.
https://ctan.org/pkg/memoir

[18] J.C. Witt, M. Stenskjær, N. Vaughan.
Lombard Press Schema 1.0.0 - Diplomatic
Transcription Guidelines. https:

//community.scta.info/pages/

lombardpress-schema-diplomatic.html

[19] J.C. Witt, M. Stenskjær, N. Vaughan.
LombardPress Schema. https://github.com/
lombardpress/lombardpress-schema

[20] Wkhtmltopdf. https://wkhtmltopdf.org

⋄ Nicolás Vaughan
Departamento de Literatura
Universidad de los Andes
Bogotá, Colombia
n.vaughan (at) uniandes.edu.co

http://nicolasvaughan.org

ORCID 0000-0002-2877-0539

TEI-XML to LATEX workflow: Issues and lessons

https://xmlgraphics.apache.org/fop/compliance.html
https://xmlgraphics.apache.org/fop/compliance.html
https://www.w3.org/TR/xsl11/
https://www.w3.org/TR/css-page-3/
https://ctan.org/pkg/enotez
https://www.pdfreactor.com/
https://www.princexml.com/
https://sourceforge.net/projects/saxon/files/
https://sourceforge.net/projects/saxon/files/
https://iso639-3.sil.org/
https://tex.stackexchange.com/questions/556911/
https://tex.stackexchange.com/questions/556911/
https://tex.stackexchange.com/questions/557079/
https://tex.stackexchange.com/questions/557079/
https://tei-c.org/release/doc/tei-p5-doc/en/html
https://tei-c.org/release/doc/tei-p5-doc/en/html
https://github.com/nivaca/cleantex
https://github.com/nivaca/cleantex
https://github.com/nivaca/sm-odd
https://github.com/nivaca/sm-relaxng
https://github.com/nivaca/xslt-latex
https://weasyprint.org/
https://ctan.org/pkg/memoir
https://community.scta.info/pages/lombardpress-schema-diplomatic.html
https://community.scta.info/pages/lombardpress-schema-diplomatic.html
https://community.scta.info/pages/lombardpress-schema-diplomatic.html
https://github.com/lombardpress/lombardpress-schema
https://github.com/lombardpress/lombardpress-schema
https://wkhtmltopdf.org

	Introduction
	Background
	Workflow
	Whitespace
	Conclusions

