TEX as described in section 453 on page 157 of the
August 1981 revision. This error affected the use of
legno. The correction involves replacing the word
ling with link and adding a missing line of shift :—
0.0; as shown below:

453. (Attach equation number 453) ==
begin ¢ := getnode (gluenodesize);
typ(q) := gluenode; gluelink (q) := filiglue;
if’ legno then
begin link (g) := b; link (eqnoboz) := g;
b := hpack (eqnoboz, dw — shift, false);
{ egno will be left-justified }
shift .= 0.0;
end .
else begin link (¢) := eqnoboz ; link (b) ;== ¢;
b := hpack (b, dw — shift, false)
4 { eqrio will be right~justified }
en

end
This code is used in section 444,

*x % % % ® ® *x *x % *x x

THE FORMAT OF PX1 FILES
David Fuchs

A PXL file is a raster description of a single
font at a particular resolution. These files are used
by driver programs for dot matrix devices; TEX it-
gelf knows nothing about PXL files. Let's say a
user creates a file called FOO.MF, which is the
METAFONT language description of a new font,
called FOO. In order for everyone to be able to run
TEX jobs that use this font and get their output
on our 200-dot-per-inch proof device, we must first
run the METAFONT program on FOO.MF, and ask
it to make both a TFM file and a PXL file for it.
These files (called FOO.TFM and FOO.PXL) are
then put in a public directory so that anyone using
TEX may access them. Now, whenever a TEX job
is run that refers to FOO (\font A=F00), the TEX
program reads in FOO.TFM to get all the width,
height, depth, kerning, ligature, and other informa-
tion it needs about any font. To get output on the
proof device, the DVI file produced by TEX must
now be processed by a device-driver program. This
program reads the postamble of the DVI file to find
out the names of all the fonts referred to in the job,
and for each font, it opens the corresponding PXL
file. In our example, the driver would find the file
FOO.PXL, which it would then use along with the
main body of the DVI file to produce the actual out-
put. The DVI file tells where to put all the charac-
ters on each page, while the PXL file(s) tell which
pixels to turn ‘on’ in order to make each character.

In fact, there is a little lie in the preceding
paragraph. The actual name of the PXL file would

TUGboat, Volume 2, No. 3

be something like FO08.1000PXL.. This means that
the PXL file represents the font FOO in an 8-
point face for a 200-dot-per-inch device with a
magnification of 1. (If you don’t fully understand
the term ‘magnification’ as it is used in the TEX
world, the rest of this paragraph might not make a
lot of sense. The end of this document contains more
information on magnified fonts.) If we also had a
100-dot-per-inch device, we would also want to have
the file FOOB8.0500PX1. (which we can get by asking
METAFONT nicely). This PXL file could also be
used by the higher resolution device’s driver for any
TEX job that asked for \font B=FDOB at 4pt; or
one that used \font C=F008, but then got TEXed
with magnification 500; or one that used \fomt
C=F008, but then got spooled with magnification
500. Note that we are assuming that the font FOOQ is
like the CM family in that it does not scale propor~
tionately in different point sizes—we are only talking
about the 8-point face. If it turns out that 8-point
FOO magnified by 1.5 is exactly the same as 12-
point FOOQ, then we can also use FO012.1000PXL
in place of FOO8.1500PXL,, and so forth. For
fonts that scale proportionately like this, a point-size
should not be included as part of the font name, and
FOO.1000PXL is by convention the 10-point size of
FOO for a 200-dot-per-inch machine.

Now for an explanation of where the bits go.
A PXL file is considered to be a series of 32-bit
words (on 36-bit machines, the four low-order bits of
each word are always zero). In the discussion below,
“left half word” means the highest-order 16 bits in
a word, and “right half word” means the 16 next-
highest-order bits in the word {which are exactly the
lowest-order 16 bits on 32-bit machines).

Both the first and last word of a PXL file con-
tain the PXL ID, which is currently equal to 1001
(decimal). The second-to-last word is a pointer to
the first word of the Font Directory. (All pointers
are relative to the first word in the file, which is word
z€r0.)

The general layout of a PXL. file looks like this:

PXL ID [1 word long ~

First word of the PXL file]
RASTER INFO [many words long ~

begins at second word]
FONT DIRECTORY [512 words - 517th-to-last

_ through 6th-to-last word)

CHECKSUM (1 word - fifth-to-last word}
MAGNIFICATION

[1 word - fourth-to-last word]

DESIGNSIZE {1 word - third-to-last word]

DIRECTORY POINTER

[t word ~ second-to-last word]
PXL D {1 word -

Last word of the PXL file}

TUGboat, Volume 2, No. 3

The Font Directory is 512 words long, and con-
tains the Directory Information for all the 128
possible characters.
Font Directory have Directory Information about
the character with ascii value of zero, the next four
words are for the character with ascii value of one,
ete. Any character not present in the font will have
all four of its Directory Information words set to
zero, 8o the Directory Information for the character
with ascii value X will always be in words 4 * X
through 4 * X + 3 of the Font Directory. For ex-
ample, if the second-to-last word in a PXL file con-
tained the value 12000, then words 12324 through
12327 of the PXL file contain information about
the ascii character “Q”, since ascii “Q” = ’'121
octal = 81 decimeal, and 4+81 = 324. The meanings
of a character’s four Directory words are described
below.

The first word of a character’s Directory
Information has the character’s Pixel Width in the
left half-word, and its Pixel Height in the right half-
word. These numbers have no connection with the
‘height’ and ‘width’ that TEX thinks the character
has (from the TFM file); rather, they are the size
of the smallest bounding-box that fits around the
black pixels that form the character’s raster repre-
sentation, i.e. the number of pixels wide and high
that the character is. For example, here is a letter
“Q” from some PXL file:

00*%kkFxdr |
01 ...sxkkxkdkkk,
02 . .k¥kk, ddk¥ |
03 .*%xx, . .. k%
04 »*»x,, kkRk
05 »*x_ wokx
06 *xx,........ *okk

07 %%x. kkkkk kkxk
08 *xikkdkkkkk kkkn
00 .dkkdkk kkkkkk,
10 . kx| kx|

11 .. sokkkdolokaek |
12 . X.®kxxkkk x%
13 Aok | ok
14 AR K
15 sk

000000000011111

012345678901234

(The rows and columns are numbered, and the ref-
erence point of the character is marked with an X',
but only the stars and dots are actually part of
the character—stars represent black pixels, and dots
represent white pixels.)

Note that the Pixel Width is just large enough to
encompass the leftmost and rightmost black pixels
in the character. Likewise, the Pixel Height is just

The first four words of the

large enough to encompass the topmost and bot
most black pixels. So, this ‘Q’s Pixel Width |
and its Pixel Height is 16, so word 12324 in the
ample PXL file contains 15 * 21€ -} 16,

The second word of a character’s Direc
Information contains the offset of the character’s
erence point from its vpper-left-hand corner of
bounding box; the X-Offset in the left half-word
Offset in the right half-word. These numbers |
be negative, and two’s complement representatic
used. Remember that the positive z direction me
‘rightward’ and positive y is ‘downward’ on the p
The offsets are in units of pixels. In our ‘Q’ exam
the X-Offset is 2 and the Y-Offset is 12, so w
12325 of the example PXL file contains 2 % 2!€ -+

The third word of a character’s Direc
Information contains the number of the worc
this PXL file where the Raster Description for
character begins. This number is relative to
beginning of the PXL file, the first word of whic
numbered zero. The layout of Raster Descript
is explained below. The Raster Description
consecutive characters need not be in order wi
a PXL file—for instance the Raster Descrip
for character ‘Q’ might be followed by the Ra
Description of the character ‘A’. Of course, & sk
character’s Raster Description is always contai
in consecutive words.

If a character is ‘totally white’ then the t]
word contains a zero. (The Pixel Width, P
Height, X-Offset and Y-Offset of a ‘totally wk
character must be zero too, although the T
Width may be non-zero. A nomn-zero TFM W
would mean that the character is a fixed wi
space. TEX's standard CM fonts do not contain
such characters.) For the “Q” example, word 1%
might contain any number from 0 thru 12000 -
(since Q’s Raster Description is 16 words long),
say it is 600.

The fourth word contains the TFM Width of
character. That is the width that TEX thinks
character is (exactly as in the TFM file). The w
is expressed in FIXes, which are 1/(220)th of
design size. The TFM Width does not take into
count the magnification at which the PXL file
prepared. Thus, if “Q” had a width of 7 points
12-point font, word 327 in the PX1. file would
tain trunc((7/12) » 229). See the TFM docume
tion for more information on FIXes.

After the 512 words of Directory Informa
come 3 words of font information:

First, the checksum, which should match
checksum in any DVI file that refers to this

(otherwise TEX prepared the DVI file under

10

wrong assumptions—it got the checksum from
a TFM file that doesn’t match this PXL file).
However, if this word is zero, no validity check will
be made. In general, this number will appear to
contain 32 bits of nonsense.

Next is an integer representing 1000 times
the magnification factor at which this font was
produced. If the magnification factor is XXXX, the
extension to the name of this PXL file should be
XOXXPXL.

Next comes the design size (just as in the TFM
file), in units of FIXes (2—2° unmagnified points;
remember that there are 72.27 points in an inch).
The design size should also be indicated by the last
characters of the PXL’s file name. The design size
is not affected by the magnification. For instance, if
the example font is CMRS5 at 1.5 times regular size,
then the PXL file would be called CMR5.1500PXL,
word 12513 would contain 1500, and word 12514
would contain 5 « 230,

The word after the design size should be the
pointer to the Directory Information, and the word
after that should be the final PXL ID word. Thus,
if the number of words in the PXL file is p (i.e.
word numbers zero through p—1) then the Directory
Information Pointer should equal p — 512 — 5.

All of the PXL file from word 1 up to the Font
Directory contains Raster-Descriptions. The Raster
Description of a character is contained in consecu-
tive words. Bits containing a ‘1’ correspond to
‘black’ pixels. The leftmost pixel of the top row of a
character’s pixel representation corresponds to the
most significant bit in the first word of its Raster
Description. The next most significant bit in the
first word corresponds to the next-to-leftmost pixel
in its top row, and so on. If the character’s Pixel
Width is greater than 32, the 33rd bit in the top
row corresponds to the most significant bit in the
second word of its Raster Description. Each new
raster row begins in a new word, so the final word for
each row probably will not be “full” (unless the Pixel
Width of the character is evenly divisible by 32).
The most significant bits are the ones that are valid,
and the unused low order bits will be zero. From this
information, it can be seen that a character with
Pixel Width W and Pixel Height H requires exactly
(ceiling(W/32))x H words for its Raster Description.

In our “Q” example, words 600 through 615
would have the binary values shown here (high order

TUGboat, Volume 2, No. 3

bit on the left):
600 00001111111000000000000000000000
801 00011111111100000000000000000000
602 00111100011110000000000000000000
603 01110000000111000000000000000000
604 11110000000111100000000000000000
605 11100000000011100000000000000000
606 11100000000011100000000000000000
807 11100111110011100000000000000000
608 11111111110111100000000000000000
609 01111100111111000000000000000000
610 001111000111100600000000000000000
611 00011111111100000000000000000000
612 00001111111001110000000000000000
613 000000001 11011100000000000000000
614 00000000011111100000000000000000
615 00000000001111100000000000000000

As an example of the case where the Pixel Width
is greater than 32, consider a character with Pixel
Width = 40 and Pixel Height = 30. The first word
of its Raster Description contains the the leftmost
32 pixels of the top row in the character. The
next word of the Raster Description contains the
remaining 8 pixels of the first row of the character
in its most significant 8 bits, with all remaining bits
zero. The third word contains the left 32 pixels of
the second row of the character, etc. So, each row
takes 2 words, and there are 30 rows, so the Raster
Description of this character requires 60 words.

Finally, some implementation notes and advice
for DVI-to-device program writers: First, please note
that PXL files supersede our older raster description
(VNT) files. One notable difference is that VNT files
claimed to have two representations for each charac-
ter, one being the 90 degree rotation of the other.
While a rotated copy of every character is useful in
many circumstances, there is no reason that installa-
tions using only one character orientation should be
burdened with so much wasted space. METAFONT
outputs PXL files as described above, and there is a
separate utility that can read a PXL file and write
a rotated version into a new PXL file. Naming con-
ventions to keep various rotations of the same font
straight are currently under consideration.

Another item still under consideration is alternate
packing schemes. You may have noticed that the
current way that rasters are stored is fairly waste-
ful of space: Why should a new raster row begin
in the next word rather than the next byte of the
raster description? The answer is that this is for
the sake of the poor people who are doing page-
painting for their Versatec/Varian on their 32-bit
mainframe computer. All the extra zercs help them
write a faster paint program. An alternate, as yet
unimplemented, PXL format would pack the rasters

TUGboat, Volume 2, No. 3

tighter for the sake of those who have a minicom-
puter dedicated to doing the painting process. Such
byte-packed PXL files will be identified by a PXL
ID of 1002. A straightforward utility program can
convert between word-packed and byte-packed PXL
files.

For those of you still in a fog about character
widths, here’s more prose: The intent is that a DVI-
to-device program should look like DVITYP, always
keeping track of the current-position-on-the-page in
RSU-coordinates. DVITYP looks at TFM files in
order to get the character width info necessary to
interpret a DVI file in this way. The DVI-to-device
program shouldn’t have to open a lot of TFM files in
addition to the PXL files it will be needing, so the
system has redundant width information for each
character—a PXL file has all of the character widths
exactly as they appesr in the TFM file (in units
of FIXes). Thus, the DVI-to-device program can
completely interpret a DVI file by getting charac-
ter widths from PXL files rather than TFM files.
The purpose of the CHECKSUM is to ensure that
the TFM files used by TEX when writing the DVI
ile are compatible with the PXL files the DVI-to-
device program sees (so if someone changes a font
and makes new TFMs but not new PXL files, you'll
have some way of knowing other than seeing ragged
right margins).

In the places where DVITYP would print a mes-
sage indicating that “Character C in Font F should
be placed at location (H,V) on the page” (where
H and V are in RSUs), the DVI-to-device program
should cause character C to be put on the paper at
the point closest to (H, V') that the resolution of the
device allows. The important point is that the DVI-
to-device program should not attempt to keep track
of the current-position-on-the-page in device-units,
since this will lead to big roundoff problems that will
show up as ragged right margins.

Note again that the character widths are different
things than pixel-widths: The width of the character
“A” in CMR10 is (say) 6.7123 points, independent of
the representation of that character on the page. For
a 100-dot-per-inch device, the raster representation
of “A” might be 18 pixels wide, while for a 200-dot-
per-inch device, the best representation might be 33
pixels wide.

Here is some more information to help clear
up misunderstandings concerning magnification.
(Much of this is taken from TEX's errata list, and
is destined to be included in the next TEX manual.)
One point to keep in mind is that the character
widths in a PXL file are exactly as in the TFM file.
Since the magnification factor is not taken into ac-

count, a DVI-to-device program should multip
widths by the product

(font design size) X (overall job magnificatic

X (font magnification) X (254000 RSU/i

X (1/22° point/FIX) X (1/72.27 inch/poi

to get the effective character width in RSUs

course, this multiplication should only be don
per character per job!)

It is sometimes valuable to be able to ¢
the magnification factor at which document
printed. For example, when preparing doct
masters that will be scaled down by some fac
a later step in the printing process, it is help
be able to specify that they be printed blown
the reciprocal factor. There are several new fe
in TEX to allow for greater ease in the product
such magnified intermediate output.

TEX should be thought of as producing a:
put a “design document”: a specification of
the final result of the printing process should
like. In the best of worlds, this “design docur
would be constructed as a print file in a gener:
device-independent format. Printing a mag
copy of this document for later reduction shot
viewed as the task of the printer and its contr
software, and not something that TFX should
about. But real world constraints may force

deviate from this model somewhat.

First, consider the plight of a TEX user who
to print a document magnified by a factor of t
a printer that only handles 8.5" by 11” paper.
der to determine an appropriate \hsize and \v
this user will have to divide the paper dimensic
the planned magnification factor. Since comy
are so good at dividing, TEX offers this use
option of setting the “magnification” parame
2000, warning TEX of the anticipated factor
blow up, and then specifying \hsize and \
in units of “truein” instead of “in”. When i
ting a “true” distance, TEX divides by the scal
tor that “magnification” implies, so as to canc
effect of the anticipated scaling. Normal unite
to distances in the “design document”, while “
units refer to distances in the magnified printe
put.

Secondly, some existing print file formai
printer combinations have no current provisic
magnified printing. This is not generally the
for DVI files, but a Press file, for example,
absolute distances internally in all positioning
mands, and Press printers treat these distan
concrete instructions without any provision for
ing. There is a program that takes a Pres
and a scale factor as input and produces as o

12

a new Press file in which all distances have been
appropriately scaled. But it is inconvenient to be
forced to use this scaling program on a regular basis.
Instead, the Press output module of TEX chooses
to scale up all distances by the “magnification” fac-
tor when writing the output Press file. Thus, the
Press files that TEX writes are not representations of
TEX's abstract “design document”, but rather repre-
sentations of the result of magnifying it by the fac-
tor (\parvali2)/1000. On the other hand, the DVI
files written by other versions of TEX contain nor-
mal units of distances, and the software that trans-
lates DVI files to instructions that drive various out-
put devices will do the magnification by themselves,
perhaps even using a magnification that was not
specified in the TEX source program; if the user has
not specified “true” dimensions, his or her DVI out-
put file will represent the design doecument regard-
less of magnification.

Caveat: Due to the manner in which the current
implementation of TEX writes Press files, it is not
permissible to change the value of parameter 12 in
the middle of a TEX run. If you want to produce
magnified output, you should reset parameter 12
once very early in your document by using the
\chpari2 control sequence, and from then on leave
it alone. Another caveat below discusses the situa-
tion in more detail.

The magnification mechanism has been extended
to include font specifications as well: in or-
der to print a document that is photographically
magnified, it is essential to use magnified fonts. A
font is specified by the “\font” control sequence,
which now has the syntax

\tont (fontcode)=(filename} at (dimen).
The “at” clause is optional. If present, the dimen-
gion specified is taken as the desired size of the
font, with the assumption that the font should be
photographically expanded or shrunk as necessary
to scale it to that size times the magnification fac-
tor specified by parameter 12. For example, the two
fonts requested by the control sequences

\font a=CMR10 at 5pt
and

\font b=CMRS at 5pt
will look somewhat different. Font a will be CMR10
photographically reduced by a factor of two, while

font b will be CMRS at its normal size (so it should -

be easier to read, assuming that it has been designed
well).

The dimension in a font specification can use any
units, either standard or “true”. The interpretation
of “true” here is identical to its interpretation in the
specification of any other distance: asking for a font

TUGboat, Volume 2, No. 3

“at 5pt” requests that the font be 5 points in size
in TEX's “design document”, while asking for a font
“at Struept” requests that the font be 5 points in
size after the scaling implied by the “magnification”
factor.

If the “at (dimen)” clause is omitted, TEX
defaults the requested size to the design size of
the font, interpreted as a design (non-“true”) dis-
tance. Thus, the control sequence “\font a=CMR10”
is equivalent to the sequence “\font a=CMR10 at
10pt”, assuming that the designer of CMR10 has
indeed told TEX that CMR10 is a 10-point font.

Caveat: This extension allows the TEX user to
request any magnification of any font. In general,
only certain standard magnifications of fonts will be
available at most raster printers, while most high-
resolution devices have scalable fonts. The user of
TEX at any particular site must be careful to request
only those fonts that the printer can handle.

Caveat: As mentioned above, you shouldn’t
change the value of parameter 12 in the middle of
a run. TEX uses the value of parameter 12 in the
following three ways:

(i) Whenever the scanner sees a “true” distance,
it divides by the current magnification.

(ii) At the end of every page, TEX's output
module may scale all distances by the current
magnification while converting this page to for-
mat for an output device {this doesn’t happen
with DVI output).

(iii) At the very end of the TEX run, the output
module uses the current magnification to acale
the requested sizes of all fonts. Given this state
of affairs, it is best not to change parameter 12
once any “true” distance has been scanned and
once any page has been output.

Some device-drivers give the user the option of
overriding the magnification at which the TEX job
was run. Note that running a given TEX job with
\magnify{2000} is not the same as running it with
\magnify{1000} and then asking the driver to over-
ride the magnification to 2000. The difference will
be in the dimensions of the pages; in the first case,
the output will be, say, 8.5” by 11" pages filled with
double size fonts, while in the second case the output
will be 17" by 22" pages with double size fonts.

This is a new document, so it is bound to con-
tain outright errors along with the portions that are
merely misleading. I would certainly be glad to hear
of any errors, but I am also interested in which parts
of the explanation need clearing up, either by add-
ing to or changing the text.

