
as described in section 453 on page 157 of the
August 1981 revision. This error dfected the use of
leqno. The correction involves replacing the word
ling with link and adding a miming line of shifl:=
0.0; as shown below:
459. (Attach equation number 453) =

begin q := getnode(g1wnodesize);
typ(q) := gluenode ; gluelank(q) := fillglue ;
if kqno thm
begin link(q) := b; Eink(eqnoboz) := q;
b : = hpack (eqnoboz, dw - shift, j alse);

(egno will be lefbjustified)
shift := 0.0;
ard

ate begin lank (q) := egnoboz ; link (b) := q ;
b := hpcrck (b, dw - shift, f a h)

{ egno will be rightjustified)
end

end
This code L umd in nection 444.

TEE FORMAT OF PXL FILES
David h c h s

A PM, ffle is a raster description of a single
font a t a particular resolution. These files are used
by driver programs for dot matrix devices; 'I&$ itr
self knows nothing about PXL files. Let's say a
user creates a file called FOO.MF, which is the
METAFONT language description of a new font,
d e d FOO. In order for everyone to be able to run
'fEX jobs that use this font and get their output
on our 200-dobper-inch proof device, we must fist
run the METAFONT program on FOO.MF, and ask
it to make both a TFM file and a PXL file for it.
These files (called FOO.TFM and FOO.PXL) are
then put. in a public directory so that anyone using

may access them. Now, whenever a '@X job
ie run that refen to FOO (\font A=FW), the '&X
program reads in FOO.TFM to get all the width,
height, depth, kerning, ligature, and other informa-
tion it needs about any font. To get output on the
proof device, the DVI file produced by 'QX muat
now be processed by a device-driver program. This
program reads the postamble of the DM file to find
out the names of all the fonta referred to in the job,
and for each font, it opens the corresponding PXL
file. In our example, the driver would find the file
FOO.PXL, which it would then use along with the
main body of the DVI file to produce the actud out-
put. The DM 6le tells where to put all the charac-
ters on each page, while the PXL file@ tell which
pixels to turn 'on' in order to make each character.

In fact, there is a little lie in the preceding

p~agraph. The actual m e of the PXL file would

TUGboat, Volume 2, No. 3

be something like F008.1000Pla. Thie meane that
the P l a file represents the font FOO in an 8-

point face for a 20-dobper-inch device with a
magrufication of 1. (If you don't fully understand
the term 'magnification' as it is used in the
world, the rest of this paragraph might not make s
lot of sense. The end of this document contains more
information on magnified fonts.) If we also had a
1Wdotper-inch device, we would also want to b e
the file F008.0500PXL (which we can get by asking
METAFONT nicely). This PXL file could also be
used by the higher resolution device's driver for any
"&X job that asked for \font B=F008 a t 4pt; or
one that used \font C=F008, but then got Q$ed
with magnification 500; or one that used \font
C=F008, but then got spooled with magnification
500. Note that we are assuming that the font FOO ia
like the CM family in that it does not scale propor-
tionately in diierent point sizeewe are only taking
about the &point face. If it turns out that &point
FOO magnified by 1.5 is exactly the same as 12-
point FOO, then we can also use F0012.1000PXL
in place of F008.1500PXL, and so forth. For
fonts that scale proportionately like this, a pointshe
should not be included m part of the font name, and
F00.1000PXL is by convention the 10-point size of
FOO for a 2O(Fdobper-inch machine.

Now for an explanation of where the bib go.
A PXL fle is considered to be a series of 32-bit
words (on 36bit machines, the four low-order bits of
each word are always zero). In the discussion below,
"left half wordn means the highesborder 16 bits in
a word, and "right half word" means the 16 next
highesborder bits in the word (which are exactly the
lowe8border 16 bits on 32-bit machines).

Both the first and last word of a PXL file con-
tain the PXL ID, which is currently equal to 1001
(decimal). The second-blast word is a pointer to
the first word of the Font Directory. (All pointers
are relative to the first word in the file, which is word
zero.)

The general layout of a PXL file looks like this:

PXL ID [I word long -
Fimt word of the PXL He]

RASTER INF'O [many words long -
begins at second word]

FONT DIRECTORY [512 words - 517th-to-U
through 6th-blast word]

~ C K S U M (1 word - firth-blast word]
MAGNIFICATION

I1 word - fourth-blast word]
DESIGNSIZE 11 word - third-to-last word]
DIRECTORY POINTER

[I word - second-*laat word]
PXL JD [l word -

Last word of the PXL Rle]

TUGboat, Volume 2, No. 3

The Font Directory is 512 words long, and con-
tains the Djrectory Information for all the 128
possible characters. The first four words of the

Font Directory have Directory Information about
the character with aecii value of zero, the next four
words are for the character with ascii value of one,
etc. Any character not present in the font will have
all four of its Directory Information words set to
zero, eo the Directory Information for the character
with ascii value X will always be in words 4 * X
through 4 * X + 3 of the Font Directory. For ex-
ample, if the second-to-last word in a PXL file con-
tained the value 12000, then words 12324 through
12327 of the PXL file contain information about
the aacii character "Q", since ascii "Q" = '121
octal = 81 decimal, and 4*81 = 324. The meanings
of a character's four Directory words are described
below.

The first word of a character's Directory
Information has the character's Pixel Width in the
left half-word, and its P i e l Height in the right half-
word. These numbers have no connection with the
'height' and 'width' that QjX thinks the character
bas (from the TFM file); rather, they are the size
of the smallest bounding-box that fits around the
black pixels that form the character's raster repre-
sentation, i.e. the number of pixels wide and high
that the character is. For example, here is a letter
"Q" from some PXL file:

00
01 ...*********...
02 ..****...****..
03 .***.......***.
04 ****.......****
05 ***.........***
06 ***,........***
07 ***:.*****..***
08 **********.****
09 .*****..******.
10 ..****...****..
I 1 ... *********. ..
12 . .X.******* . . **

13***.***
14A*****
15 *****

00000000001111i
012345678901234

(The rows and columns are numbered, and the ref-
erence point of the character is marked with an 'X',
but only the stars and dots are actually part of
the character-stars represent black pix&, and dota
represent white pixels.)

Note that the Pixel Width is just large enough to
encompass the leftmost and rightmost black pixels

in the character. Likewise, the Pixel Height is just

large enough to encompaaa the topmost and bottom-
most black pixels. So, this 'Q's Pixel Width is 15
and its Pixel Height is 16, so word 12324 in the ex-
ample PXL file contains 15 * 216 + 16,

The second word of a character's Directory
Information contains the offset of the character's ref-
erence point from its upper-lefbhand wmer of the
bounding box; the X-offset in the left half-word, Y-
Offset in the right half-word. These numbera may
be negative, and two's complement representation is
used. Remember that the positive z direction means
'rightward' and positive y is 'downward' on the page.
The offsets are in units of pixels. In our 'Q' example,
the X-Offset is 2 and the Y-Offset is 12, so word
12325 of the example PXL file contains 2 * 216 + 12.

The third word of a character's Directory
Information contains the number of the word in
this PXL file where the Raster Description for this
character begins. This number is relative to the
beginning of the PXL file, the first word of which is
numbered zero. The layout of Raster Descriptions
is explained below. The Raster Descriptions of
consecutive charactera need not be in order within
a PXL file-for instance the Raster Description
for character 'Q' might be followed by the Raster
Description of the character 'A'. Of course, a single
character's Raster Description is always contained
in consecutive words.

If a character is 'totally white' then the third
word contains a zero. (The Pixel Width, Pixel
Height, X-Offset and Y-Offset of a 'totally white'
character must be zero too, although the TFM
Width may be non-zero. A non-zero TFM Width
would mean that the character is a fixed width
space. l)jX's standard CM fonts do not contain any
such characters.) For the "Q" example, word 12326
might contain any number from 0 thru 12000 - 16
(since Q's Raster Description is 16 words long), let's
say it is 600.

The fourth word contains the TFM Width of the
character. That is the width that '&jX thinks the
character is (exactly as in the TFM file). The width
is expressed in FMes, which are 1/(2~O)th of the
design size. The TFM Width does not take into ac-

count the magnification at which the PXL lile was
prepared. Thus, if "Q" had a width of 7 points in a
12-point font, word 327 in the PXL file would con-
tain trunc((7/12) * 220). See the TFM document&
tion for more information on FMes.

After the 512 words of Directory Information
come 3 words of font information:

First, the checksum, which should match the
checksum in any DW file that refers to this font

(otherwise '&X prepared the DM file under the

10 TUGbaat, Volume 2, No. 3

wrong assumptions-it got the checksum from bit on the left):
a TFM tile that doesn't match this PXL file). 600 OOOOllllillOOOOOOOOOOOOOOOOOOOOO
However, if this word is two, no validity check will 601 00011111111100000000000000000000
be made. In general, thia number wil l appear to 602 OOli1lOOOiillOOOOOOOOOOOOOOOOOOO

contain 32 bits of noneenee. 603 01110000000111000000000000000000
604 11110000000111100000000000000000

Next is an integer representing lo00 times
the magnification factor at which this font was
produced. If the magnification factor is XXXX, the
extension to the name of this PXL file should be
XXXXPXL.

Next comes the design size (just as in the TFM
lile), in units of FXes (2-20 unmagnified points;
remember that there are 72.27 points in an inch).
The design size should also be indicated by the laat
characters of the PXL's file name. The design size
is not affected by the magnification. For instance, if
the example font is C M . 5 a t 1.5 times regular sine,
then the PXL 6le would be called CMR5.1500PXL1
word 12513 would contain 1500, and word 12514
WOUM contain 5 * 220.

The word after the design siw should be the
pointer to the Directory Information, and the word
after that should be the final PXL ID word. Thue,
if the number of words in the PXL file is p (i.e.
word numbers zero through p- 1) then the Directory
Information Pointer should equal p - 512 - 5.

All of the PXL file from word 1 up to the Font
Directory contains bter-Descriptions. The Raster
Description of a character is contained in consecu-
tive words. Bits containing a 'I' correspond to
'black' pixels. The leftmost pixel of the top row of a
character's pixel representation corresponds to the
most significant bit in the first word of its Raster
Description. The next most significant bit in the
first word corresponds to the nextibleftmoet pixel
in its .top row, and so on. If the character's Pixel
Width is greater than 32, the 33rd bit in the top
row corresponds to the most significant bit in the
second word of its Raster Description. Each new
raster row begins in a new word, so the 581 word for
each row probably will not be "fulln (unless the Pixel
Width of the character is evenly divisible by 32).
The most significant bits are the ones that are valid,
and the unused low order bits will be zero. h m this
information, it can be seen that a character with
Pixel Width W and Pixel Height H requires exactly
(ceiling(W/32))*H words for its h a t e r Description.

In our "Q" example, words 600 through 615
would have the binary vsluea ehown here (high order

As an example of the case where the Pixel Width
is greater than 32, consider a character with Pixel
Width = 40 and Pixel Height = 30. The first word
of its Raster Description contains the the lefkmost
32 pixels of the top row in the character. The
next word of the Raster Description contains the
remaining 8 pixels of the first row of the character
in its moat significant 8 bits, with all remaining bits
rero. The third word contains the left 32 pixels of
the second row of the character, etc. So, each mw
takes 2 words, and there we 30 rows, eo the Raeter
Description of this character requires 60 words.

Finally, some implementation notes and advice
for DVI-bdevice program writers: First, please note
that PXL files supersede our older raster deecription
(VNT) files. One notable difference is that VNT filee
claimed to have two representations for each charac-
ter, one being the 90 degree rotation of the other.
While a rotated copy of every character is useful in
many circumstances, there is no reason that install&
tions using only one character orientation should be
burdened with so much wasted space. MEVAFONT
outputs PXL files as described above, and there ia a
separate utility that can read a PXL file and write
a rotated version into a new PXL file. Naming con-
ventions to keep various rotations of the same font
straight are currently under consideration.

Another item still under consideration is alternate
packing schemes. You may have noticed that the
current way that rasters are stored is fairly waste-
ful of space: Why should a new raeter row begin
in the next word rather than the next byte of the
raster description? The answer is that this is for
the sake of the paor people who are doing page
painting for their VersatecfVarian on their 32-bit
mainframe computer. All the extra zeros help them
write a faster paint program. An alternate, as yet
wimplemented, PXL format would pack the rastera

TUGboat, Volume 2, No. 3

tighter for the sake of those who have a minicom-
puter dedicated to doing the painting process. Such
byte-packed PXL files will be identified by a PXL
ID of 1002. A straightforwsrd utility pro- can
convert between word-packed and byte-packed PlCL
am.

For thoae of you still in a fog about character
widths, here's more prose: The intent is that a DVI-

bdevice program should look like DVITYP, always
keeping track of the current-position-on-thepage in
RSU-coordinates. DVITYP looks at TFM Ales in
order to get the character width info necessary to
interpret a DVI file in this way. The DVI-to-device
program shouldn't have to open a lot of TFM files in
addition to the PXL files it will be needing, so the
system has redundant width information for each
character-a PXL fle has all of the character widths
exactly as they appear in the TFM file (in units
of FMes). Thus, the DVI-to-device program can
completely interpret a DVI file by getting charac-
ter widths from PXL filea rather than TFM files.
The purpose of the CHECKSUM is to ensure that
the TFM files used by when writing the DVI
'ile are compatible with the PXL files the DVI-to-
device program sees (so if someone changes a font
and makea new TFMs but not new PXL files, you'll
have some way of knowing other than seeing ragged
right margins).

In the places where DVITYP would print a mes-
sage indicating that "Character C in Font F ahould
be placed at location (H, V) on the pagen (where
H and V are in RSUs), the DVI-to-device program
should cause character C to be put on the paper at
the point closest to (H, V) that the resolution of the
device allows. The important point is that the DVI-
to-device program should not attempt to keep track
of the current+osition-on-thepage in device-units,
since this will lead to big roundoff problems that will
show up as ragged right margins.

Note again that the character widths are different
things than pixel-widthe: The width of the character
"An in CMRlO is (say) 6.7123 points, independent of
the representation of that character on the page. For
a l0pdot-per-inch device, the raster representation
of "An might be 18 pixels wide, while for a 200-dot-
per-inch device, the best representation might be 33
pixels wide.

Here is some more information to help clear
up misunderstandings concerning m&cation.
(Much of this is taken from errata list, and
is destined to be included in the next T@C manual.)
One point to keep in mind is that the character
widths in a PXL, file are exactly as in the TFM file.
Since the magnification factor is not taken into ac-

count, a DVI-to-device program ahould multiply the
widths by the product

(font design siae) X (overall job magnification)
x (font magnification) X (254000 RSU/inch)
x (I / ~ ~ O point/FM) X (1/72.27 inch/point)

to get the effective character width in RSUs. (Of
course, this multiplication should only be done once
per character per job!)

It is sometimes valuable to be able to control
the magnification factor at which documents are
printed. For example, when pmpating document
masters that will be scaled dawn by some factor a t
a later step in the printing process, it is helpful to
be able to specify that they be printed blown up by
the reciprocal factor. There are several new features
in 'QX to allow for greater ease in the production of
such magnified intermediate output.

ljiJC should be thought of as producing as out-
put a "design document": a speci6cation of what
the final result of the printing pmcem should look
like. In the best of worlds, this "design document"
would be constructed as a print file in a general and
device-independent format. Printing a magdied
copy of this document for later reduction should be
viewed aa the task of the printer and its controlling
software, and not something that should worry
about. But real world constraints may force us to
deviate from this model somewhat.

First, consider the plight of a l$jX user who plans
to print a document magnified by a factor of two on
a printer that only handles 8.5" by 11" paper. In or-
der to determine an appropriate \hsize and \vsize,
this user will have to divide the paper dimensions by
the planned magnification factor. Since computers
are so good at dividing, 'J&X offers this user the
option of aetting the "magnification" parameter to
2000, warning 'QjX of the anticipated factor of 2
blow up, and then specifying b i z e and \vsize
in units of "truein" instead of "inn. When input-
ting a "true" di~~tance, divides by the scale fac-
tor that "magnification" implies, so aa to cancel the
effect of the anticipated scaling. Normal units refer
to distances in the "design document", while "true"
units refer to distances in the magnified printer out-
put.

Secondly, some existing print file format and
printer combinations have no current provision for
magded printing. This is not generally the case

for DVI files, but a Press file, for example, uses
absolute distances internally in all positioning com-
mands, and P m s printers treat these distances as
concrete in~tructions without any provision for seal-
ing. There is a program that takes a P m file
snd a scale factor as input and produces ss output

a new Press file in which all distances have been
appropriately scaled. But it is inconvenient to be
forced to use this scaling program on a regular basis.
Instead, the Press output module of 'QjX chooses
to scale up all distances by the "magnificationn fac-
tor when writing the output Preas file. Thus, the
Prese files that QjX writes are not representations of
W s abstract "design documentn, but rather repre
sentations of the result of magnifying it by the fac-
tor (\parva112)/1000. On the other hand, the DVI
film written by other versions of contain nor-
mal units of distances, and the software that trane-
labs DVI files to instructions that drive various o u t
put devices will do the magnification by themselves,
perhaps even using a magnification that wae not
specified in the 'JjiJC source program; if the user haa
not specified "truen dimensions, his or her DVI out-
put file will represent the design document regard-
less of magnification.

Caveaf: Due to the manner in which the current
implementation of 'I)ijX writes Press files, it is not
permissible to change the value of parameter 12 in
the middle of a QjX run. If you want to produce
msgnified output, you should reaet parameter 12
once very early in your document by using the
\chparl2 control sequence, and from then on leave
it alone. Another caveat below discusses the dtua-
tion in more detail.

The magnification mechanism haa been extended
to include font specifications as well: in or-
der to print a document that is photographically
magnified, it is essential to use magnified fonts. A
font is specified by the "\fontn control sequence,
which now has the syntax

\font (fontcode)=(filename) a t (dimen).

The "atJy clause is optional. If present, the dimen-
don specified is taken as the desired sine of the
font, with the assumption that the font should be
photographically expanded or shrunk as necesesry
to scale it to that siae times the magnification fac-
tor specified by parameter 12. For example, the two
fonts requested by the control sequences

\font a=CW10 a t 5pt
and

\font b=CMR5 a t 5pt
will look somewhat different. Font a will be CMRlO
photographically reduced by a factor of two, while
font b will be CMR5 at its normal siae (so it should
be easier to read, assuming that it has been designed
well).

The dimendon in a font specification can use any
units, either standard or "truen. The interpretation
of "true" here is identical to its interpretation in the
specification of any other dietance; d i n g for a font

TUGboat, Volume 2, No. 3

"at 5ptn requeets that the font be 5 pointe in eire
in QjC's "design document", while asking for a font
"at 5trueptJ' requests that the font be 5 points in
sise after the scaling implied by the "mrr%nificationJ'
factor.

If the "at (dimen)" clause is omitted, '&X
defaults the requested size to the design sire of
the font, interpreted as a design (non-"truen) dis-
tance. Thue, the control sequence "\font a=CURIO"
is equivalent to the sequence "\font a m 1 0 a t
10ptn, aaeuming that the designer of CMRlO hse
indeed told '&X that CMRlO is a 10-point font.

Caveat: This extension allows the T)ijX user to
request any magnification of any font. In general,
only certain standard magnifications of fonts will be
available at most raster printers, while most high-
resolution devices have scalable fonts. The user of
TE;X at any particular site must be careful to request
only those fonts that the printer can handle.

Caveat: As mentioned above, you shouldn't
change the value of parameter 12 in the middle of
a run. 'I)ijX uses the value of parameter 12 in the
following three ways:

(i) Whenever the scanner sees a "truen distance,
it divides by the current magnification.

(ii) At the end of every page, 'QJC's output
module may scale all distances by the current
magnification while converting this page to for-
mat for an output device (this dwn ' t happen
with DVI output).

(iii) At the very end of the QjX run, the output
module uses the current magnification to scale
the requested sizes of all fonts. Given this etate
of affairs, it is beat not to change parameter 12
once any "true" distance hae been scanned and
once any page has been output.

Some devicedrivers give the user the option of
overriding the magnification at which the 'QjX job
was run. Note that running a given 7)jX job with
\-if yC2OOO) is not the same aa running it with
\magnif y<1000) and then asking the driver to over-
ride the magnification to 2000. The difference will
be in the dimensions of the pages; in the first case,
the output will be, say, 8.5" by 11" pages Blled with
double sise fonts, while in the second case the output
will be 17" by 22" pages with double siae fonts.

This is a new document, eo it is bound to con-
tain outright errors along with the portions that are
merely misleading. I would certainly be glad to hear
of any errors, but I am also interested in which parts
of the explanation need clearing up, either by add-
ing to or changing the text.

